By Jo Boaler, Professor of Mathematics Education, Stanford University, and co-founder of youcubed.org
(Posted on February 1, 2019 by Art Duval)
2018 was an important year for the Letchford family – for two related reasons. First it was the year that Lois Letchford published her book: Reversed: A Memoir.[1] In the book she tells the story of her son, Nicholas, who grew up in Australia. In the first years of school Lois was told that Nicholas was learning disabled, that he had a very low IQ, and that he was the “worst child” teachers had met in 20 years. 2018 was also significant because it was the year that Nicholas graduated from Oxford University with a doctorate in applied mathematics.
Nicholas’s journey, from the boy with special needs to an Oxford doctorate, is inspiring and important but his transformation is far from unique. The world is filled with people who were unsuccessful early learners and who received negative messages from schools but went on to become some of the most significant mathematicians, scientists, and other high achievers, in our society – including Albert Einstein. Some people dismiss the significance of these cases, thinking they are rare exceptions but the neuroscientific evidence that has emerged over recent years gives a different and more important explanation. The knowledge we now have about the working of the brain is so significant it should bring about a shift in the ways we teach, give messages to students, parent our children, and run schools and colleges. This article will summarize three of the most important areas of neuroscience that directly apply to the teaching and learning of mathematics. For more detail on these findings, and others, visit youcubed.org or read Boaler (2016).[2]
The first important area of knowledge, which has been emerging over the last several decades, shows that our brains have enormous capacity to grow and change at any stage of life. Some of the most surprising evidence that highlighted this came from studies of black cab drivers in London. People in London are only allowed to own and drive these iconic cars if they successfully undergo extensive and complex spatial training, over many years, learning all of the roads within a 20-mile radius of Charing Cross, in central London, and every connection between them. At the end of their training they take a test called “The Knowledge” – the average number of times it takes people to pass The Knowledge is twelve. Neuroscientists decided to study the brains of the cab drivers and found that the spatial training caused areas of the hippocampus to significantly increase.[3] They also found that when the drivers retired, and were not using the spatial pathways in their brains, the hippocampus shrank back down again.[4] The black cab studies are significant for many reasons. First, they were conducted with adults of a range of ages and they all showed significant brain growth and change. Second, the area of the brain that grew – the hippocampus – is important for all forms of spatial, and mathematical thinking. The degree of plasticity found by the scientists shocked the scientific world. Brains were growing new connections and pathways as the adults studied and learned, and when the spatial pathways were no longer needed they faded away. Further evidence of significant brain growth, with people of all ages, often in an 8-week intervention, has continued to be produced over the last few decades, calling into question any practices of grouping and messaging to students that communicate that they cannot learn a particular level of mathematics.[5] Nobody knows what any one student is capable of learning, and the schooling practices that place limits on students’ learning need to be radically rethought.
Prior to the emergence of the London data most people had believed either that brains were fixed from birth, or from adolescence. Now studies have even shown extensive brain change in retired adults.[6] Because of the extent of fixed brain thinking that has pervaded our society for generations, particularly in relation to mathematics, there is a compelling need to change the messages we give to students – and their teachers – across the entire education system. The undergraduates I teach at Stanford are some of the highest achieving school students in the nation, but when they struggle in their first math class many decide they are just “not a math person” and give up. For the last several years I have been working to dispel these ideas with students by teaching a class called How to Learn Math, in which I share the evidence of brain growth and change, and other new ideas about learning. My experience of teaching this class has shown me the vulnerability of young people, who too readily come to believe they don’t belong in STEM subjects. Unfortunately, those most likely to believe they do not belong are women and people of color.[7] It is not hard to understand why these groups are more vulnerable than white men. The stereotypes that pervade our society based on gender and color run deep and communicate that women and people of color are not suited to STEM subjects.
The second area of neuroscience that I find to be transformative concerns the positive impact of struggle. Scientists now know that the best times for brain growth and change are when people are working on challenging content, making mistakes, correcting them, moving on, making more mistakes, always working in areas of high challenge.[8, 9] Teachers across the education system have been given the idea that their students should be correct all of the time, and when students struggle teachers often jump in and save them, breaking questions into smaller parts and reducing or removing the cognitive demand. Comparisons of teaching in Japan and the US have shown that students in Japan spend 44% of their time “inventing, thinking and struggling with underlying concepts” but students in the U.S. engage in this behavior only 1% of the time.[10] We need to change our classroom approaches so that we give students more opportunity to struggle; but students will only be comfortable doing so if they have learned the importance and value of struggle, and if they and their teachers have rejected the idea that struggle is a sign of weakness. When classroom environments have been developed in which students feel safe being wrong, and when they have been valued for sharing even incorrect ideas, then students will start to embrace struggle, which will unlock their learning pathways.
Continue reading at: https://blogs.ams.org/matheducation/2019/02/01/everyone-can-learn-mathematics-to-high-levels-the-evidence-from-neuroscience-that-should-change-our-teaching/